Войти
Особенности ведения бизнеса в России
  • Какой металл был освоен первым
  • Правила работы с микроскопом
  • Правила делегирования в менеджменте
  • Архив библиотечных выставок
  • 113 трудового кодекса российской федерации
  • Что такое окдп 2. Коды окпд2 продукции. Какая информация содержится в кодах
  • Лидеры робототехники. Робототехника: с чего начать изучение, где заниматься и каковы перспективы

    Лидеры робототехники. Робототехника: с чего начать изучение, где заниматься и каковы перспективы

    Что общего у программиста, занимающегося андроидами, погруженного в психологию и бихевиористику, и инженера, который пишет алгоритмику индустриальных роботов и изучает мехатронику и высшую математику? Оба они занимаются робототехникой - самой востребованной отраслью в ближайшем будущем. Сейчас роботостроение в России - непаханое поле: потребность в разных роботах (промышленных, домашних, мобильных, боевых, антропоморфных) довольно высокая, а специализируются на их производстве всего несколько компаний. Что нужно знать о профессии робототехника и чему начинать учиться уже сегодня, Look At Me узнал у экспертов.

    Эланд Инбар о недостатках американского
    образования и о том, чем полезен конструктор Lego

    «У создания роботов есть две важных составляющих: инженерные решения и железо, с одной стороны, и обработка данных и софт - с другой. Чтобы быть робототехником, нужно понимать и разбираться в обоих вопросах, там как они одинаково важны. Роботы - это те же самые компьютеры, только с моторами и сенсорами. Думайте о них как об информатике, воплощённой в жизнь. В любом случае, чтобы постигнуть эту науку, вам придётся начать с разработки программного обеспечения, а значит, придётся выучить языки программирования. Например, Python широко поддерживается многими платформами. ROS (Robot Operating System ) сейчас тоже набирает популярность, хотя их создателей Willow Garage больше не существует. Начинающим робототехникам я рекомендую приобрести конструкторы LEGO EV3 или Robotis Bioloid для тренировок, они помогут погрузиться в детали. Добейтесь уверенности при работе с этими конструкторами, разработайте основные алгоритмы (простейшую навигацию, захваты и т. д.). Это даст вам базу. Потом надо обязательно устроиться интерном в робототехническую компанию - там вас научат всему. Кстати, если вы решили учиться робототехнике в американском вузе, то помните, что там основное внимание уделяется машиностроению, а вам никак нельзя забывать про софт.

    Сейчас очень много прикольных роботов, но никто их не покупает, потому что на самом деле они не решают важных проблем

    Однажды вы почувствуете, что готовы к созданию собственного робота. Это и легче, и труднее всего. Поэтому я всегда советую начинать с необходимости. Возьмите за основу реальную проблему, и пусть ваше устройство решает её. Сейчас очень много прикольных роботов, но никто их не покупает, потому что на самом деле они не решают важных проблем. В тоже время сейчас проблем полно. Займитесь ими, и это приведёт вас к успеху».

    Владимир Белый о том, почему роботов
    стоит создавать в человеческом обличии

    «Робототехника - очень широкое понятие, в него входит и разработка программного обеспечения и мобильного софта, и создание сложных инженерных решений, программирование искусственного интеллекта и дизайн. Это очень перспективное направление не только для инженеров и программистов, но и для дизайнеров, маркетологов и даже психологов. Мы живём в интересное время: на наших глазах зарождается абсолютно новый рынок, продукты которого изменят нашу жизнь. Подобное случилось, когда появились, например, персональные компьютеры.

    Сегодня я и моя команда работаем над усовершенствованием наших роботов. Мы делаем это, чтобы облегчить жизнь людей, оставить им больше времени для общения с родными и любимыми. Роботы должны заменить нас в рутинной и опасной работе, как уже произошло во многих видах производства. Сейчас нельзя представить нашу жизнь без промышленных роботов, которые занимаются сборкой, сваркой, сортировкой разных продуктов - они оптимизируют предприятия, позволяют сократить расходы и риски.

    Помимо промышленных роботов, есть так называемые биоморфные роботы - прообразы животных и насекомых, которые благодаря своим размерам и прочим особенностям могут выполнять особые задачи. Однако антропоморфные роботы, то есть похожие на людей, это наиболее удобный вариант воплощения искусственного интеллекта. Дело в том, что весь окружающий нас быт создан с расчётом на человека: на его рост, особенности анатомии. Поэтому гораздо более выгодно создать машину, способную передвигаться и работать в тех же условиях, что и мы, чем приспосабливать, скажем, робота на гусеничной платформе или на колёсной базе, к человеческому быту. Кроме того, сработал психологический фактор: люди всегда стремились создать себе подобного.

    Нужно сразу создавать параллельный мир, где роботы сосуществуют с людьми
    и становятся их помощниками

    Сегодня антропоморфная робототехника пока ещё находится в зарождающейся стадии: областей для применения таких роботов много, а нерешённых проблем - ещё больше. Наша компания старается развивать эту отрасль. Мы специально создали экосистему, в которой разработчикам ПО даётся возможность делать приложения для наших роботов, то есть фактически организовали рабочие места для программистов. Кроме того, это хорошо и для потребителя. Покупая нашего робота Alphabot или арендуя его, он получает некую машину, которую можно «приспособить» под конкретные нужды. Здесь можно провести аналогию с App Store. Мы покупаем IPAD, загружаем нужные программы и получаем персонифицированное устройство.

    Однако на данном этапе люди ещё не могут свыкнуться с мыслью, что вскоре роботы войдут в нашу жизнь так же плотно, как, например, планшеты. Важно понимать, что мы не призываем разрушить старый мир, а на его руинах что-то создавать. Нет! Нужно сразу создавать параллельный мир, где роботы сосуществуют с людьми и становятся их помощниками. Призываем всех людей присоединиться к такой идеологии и вместе развивать будущее человечества.

    В восстание машин, которого многие опасаются, я не верю. Но всегда нужно помнить, что за любой машиной стоит человек. А вот в людях нельзя быть уверенным до конца».

    Сергей Мельников о том, как самостоятельно изучить робототехнику и собрать своё первое устройство

    Сергей Мельников

    Разработчик автоматизированных систем, программист, преподаватель робототехники, администратор servodroid.ru

    «Я стал заниматься роботами ещё в школе, когда меня зачислили в кружок «Радиолюбитель». Там я научился паять, разбираться в схемотехнике и делать простые инженерные конструкции. Когда же я научился читать любые радиоэлектронные схемы, дело дошло до простого робота с парой светодатчиков и реле, по которым он видел, и мог передвигаться. Самое интересное - наблюдать, как «железяка» без человеческой помощи сама, своими силами, что-то делает. После того как я собрал своё первое громоздкое устройство с кучей проводов, залитое клеем и обмотанное скотчем, я влюбился в робототехнику.

    В Санкт-Петербурге я учился на программиста, но при этом продолжал заниматься роботами. Я самостоятельно погружался в специальность и считаю, что это лучший путь, и каждый может ему следовать.

    Я специализируюсь не только на BEAM-робототехнике, но и на сложных вычислительных системах, комплексах и, конечно же, программном обеспечении. Например, я сотрудничаю с МЧС и занимаюсь роботами для спасательных и разведывательных работ. Но в основном моя любимая часть - это BEAM («биология, электроника, эстетика, механика») . С этого всё начинается: с простейших роботов из доступных компонентов без сложного программирования. Собирая BEAM-робота, мы стараемся подходить к выполнению задачи с разных ракурсов, даже не имея большого числа электронных компонентов и логических цепочек. Собирая такого робота, мы в конце концов можем ткнуть пальцем в любую его часть и рассказать о ней всё от А до Я. Рассказать, как идёт сигнал от фотодатчика, как он обрабатывается микросхемой, и что получается в конце. Мы всегда можем по цепочке выявить причину, из-за которой не работает робот. Это лучшая база для новичков.

    Я уверен, что робототехника очень перспективная сфера деятельности. Она позволяет человеку применить практически любые свои знания. Создать робота - это как нарисовать картину, имея в руках не кисть, а паяльник. Каждый раз ты удивляешься тому, что можешь собрать такую чудную конструкцию, а самое важное - найти ей применение».

    Это статья об индустриальном применении робототехники. Применение роботов в промышленности началось, по историческим меркам, не так давно - чуть больше, чем полвека назад, но сейчас уже мало какое производство можно представить себе без автоматических линий, без стальных манипуляторов и зорких стеклянных зрачков роботов - эти железные ребята прочно вошли в большинство производственных процессов и уходить не собираются.


    Несмотря на такое обширное, почти повсеместное распространение роботов, лишь специалисты в полной мере представляют себе весь спектр их возможностей. В этой статье мы приоткроем дверь в мир промышленной робототехники для широкого круга читателей: опишем некоторые разновидности производственных роботов и сферы их применения. Нельзя объять необъятное в одной статье, но, если читателям будет интересно, мы обязательно продолжим.

    Так какие они бывают - роботы?

    Есть несколько классификаций промышленных роботов: по типу управления, по степени мобильности, по области применения и специфике совершаемых операций.

    По типу управления:

    Управляемые роботы: требуют, чтобы каждым их движением управлял оператор. В силу узости областей применения распространены мало. Да и не совсем роботы.

    Автоматы и полуавтономные роботы: действуют строго по заданной программе, зачастую не имеют сенсоров и не способны корректировать свои действия, не могут обойтись без участия рабочего.

    Автономные: могут совершать запрограммированный цикл действий без участия человека, согласно заданным алгоритмам и корректируя свои действия по мере необходимости. Такие роботы способны полностью перекрыть поле деятельности на своем участке конвейера, без привлечения живой рабсилы.

    По функциям и сфере применения:

    Роботы разделяются по назначению и исполняемым функциям, вот лишь некоторые из них: промышленные роботы бывают универсальные, сварочные , машиностроительные, режущие, комплектовочные, сборочные, упаковочные, складские, малярные.

    Это далеко не полный перечень: количество всевозможных вариантов постоянно растет и все перечислить невозможно в рамках одной статьи. Можно лишь с уверенностью сказать о том, что вряд ли найдется такая область человеческой деятельности, где роботы не смогли бы сделать труд человека более творческим, взяв всю монотонную и опасную часть работы на себя.

    Другие методы классификации

    У каждой энциклопедии, каждого справочника и каждого производителя своя классификация и типология роботов. Что и не удивительно - зачастую она определяется сугубо специфическими нуждами и частным подходом того, кто её составляет.

    Помешает ли это нам рассмотреть некоторые образцы и понять - что же они умеют? Нет конечно. Поехали.

    Рассмотрим образцы

    Среди промышленных роботов выделяется продукция таких известных фирм, как Kuka, Fanuc, Universal Robots, некоторые образцы которых мы рассмотрим чуть ниже.


    KUKA KR QUANTEC PA - один из лучших роботов-палетоукладчиков на рынке. KUKA KR QUANTEC PA Arctic - его модификация, робот функционирующий при экстремально низких температурах. Он создан для работы преимущественно в морозильных камерах, при температурах до -30 °C. Электронные и механические части аппарата не нуждаются в защите от мороза, снега, инея, а также не выделяют излишнего тепла. Радиус действия манипулятора модификации Арктик, как и у стандартного KUKA KR QUANTEC PA, составляет 3195 мм, а полезная нагрузка - до 240 кг. Аппарат идеален для применения в пищевой промышленности и в условиях крайнего севера. Кроме составления штабелей из паллетов, робот может выполнять и другие манипуляции, ведь точность его движений, а точнее говоря - стабильность повторяемости позиционирования, составляет 0,06 мм.


    FANUC M-2000iA/1200 - пятиосевой грузоподъемный робот поднимающий до 1200 кг и перемещающий этот груз на расстояние до 3,7 м - идеален в качестве погрузчика, так как работает без участия человека, что практически сводит к нулю опасность травматизма. Работает при температурах 0°C - +45 °C. Стабильность повторяемости - 0,03 мм.


    Крайне прочный аппарат.


    UR10 - самый крупный из манипуляторов Universal Robots и это коллаборативный робот, проще говоря - он создан для работы с другим оборудованием и помощи в работе человеку.


    Манипулятор модели UR10 имеет радиус действия 1,3 м и поднимает груз до 10 кг. Его можно использовать с сельскохозяйственным, фармацевтическим, технологическим и многим другим оборудованием. Компактно размещается на рабочем месте человека, чтобы стать ему “третьей рукой”, легко программируется и быстро настраивается.

    UR10 умеет завинчивать, клеить, сваривать и паять, производить литьевые и сборочные работы.

    Также роботы Universal Robots применены в проекте Voodoo Manufacturing: Project Skywalker компании Medium Corporation - это фабрика 3D-печати, многие операции на которой выполняют именно роботы-манипуляторы. Такие действия, как замена платформ для печати, сбор и складирование готовых изделий больше не требуют неустанного внимания персонала.

    Особенно интересны универсальные роботы, так как именно они, в силу своего назначения, снабжены наиболее адаптивными системами управления.

    Rethinkrobotics

    Это такие роботы, как Baxter и Sawyer производства Rethinkrobotics.

    Очень интересным представляется подход компании Stratasys, которая создала промышленный аппарат нового типа - гибрид робота и 3D-принтера.


    Конечно, любой 3D-принтер обладает признаками робота, но тут - это совершенно традиционной формы роботизированный манипулятор, имеющий в том числе и функцию FDM-печати. Stratasys Infinite-Build 3D Demonstrator предназначен, прежде всего, для авиационного и космического производства, в котором так важна его способность производить печать на вертикальных поверхностях неограниченной площади, в соответствии с концепцией “infinite-build” - “бесконечное построение”. С работой над проектом связаны такие монстры, как аэрокосмический гигант Boeing и автоконцерн Ford, которые предоставили Stratasys спецификации по необходимым характеристикам получаемых изделий.


    Восьмиосевой механизм манипулятора, обилие специально разработанных композитных материалов для печати, традиционно высокое качество изготовления - все говорит нам о том, что у этого аппарата и его потомков большое будущее.


    Figure 4 компании 3D Systems - модульная робототехническаяя система для автоматизации стереолитографической 3D-печати, ни больше, ни меньше.


    Это целый автоматический комплекс, который способен производить новые изделия каждые несколько минут - в отличие от нескольких часов на обычных SLS-принтерах.


    Кроме того, в цикл уже включены и такие этапы, как промывка, отделение поддержек и дозасветка, а не только первичная экспозиция. Все это Figure 4 делает сам, без вмешательства оператора в процесс работы.

    Благодаря модульности, на основе Figure 4 можно создать достаточно крупные автоматические линии, используя стандартные компоненты.


    Этот комплекс был представлен общественности в этом году, на выставке The International Dental Show в Кёльне, как и новый 3D-принтер ProJet CJP 260Plus - полноцветный 3D-принтер предназначенный для анатомического моделирования медицинских изделий и быстрого прототипирования любых промышленных образцов.



    Принтер также роботизирован - снабжен системой автоматической загрузки, удаления и переработки печатного порошка.

    Можно с уверенностью сказать, что комплексный подход к 3D-печати - часть производственной культуры будущего. Он даст радикально новое сочетание скорости, точности, удобства и снижения себестоимости изделий.


    Carbon SpeedCell - технологическое решение от компании Carbon, которое включает в себя новый 3D-принтер The M2, работающий по технологии CLIP, и финишинговый аппарат для стереолитографических распечаток Smart Part Washer.


    CLIP - технология бесслойной стереолитографической печати, обеспечивающая скорость от 25 до 100 раз быстрее обычной SLS и новый уровень качества поверхности.

    Система CLIP (Continuous Liquid Interface Production) позволяет получить невозможные ранее формы изделий требующие минимальной постобработки. Точных характеристик аппаратного комплекса производитель пока не предоставил, но сам подход уже радует - это почти готовое решение для любой мастерской, в которой требуется стереолитографическая печать.


    Аппарат сочетающий в себе несколько разных подходов к обработке деталей: это и классический фрезерный станок с программным управлением - пятиосевой и весьма точный, и лазерный режущий инструмент с теми же степенями свободы, и печатающий металлом 3D-принтер с технологией лазерного напыления. Сложно представить себе операцию, которую не смог бы произвести этот станок с металлической деталью. Гибридный подход: фрезеровка заготовки, наплавление недостающих деталей или печать с нуля и чистовая обработка - все операции могут произведены с деталью за один подход, в рамках одной заданной программы, без прерывания технологического цикла. Размер обрабатываемой и/или печатаемой детали составляет до 600 на 400 мм, а вес может быть до 600 кг.

    Такое МФУ для работы по металлу уже многое изменило в культуре производства штучных и мелкосерийных изделий, а в ближайшее время подобный подход может распространиться и на серийное производство.

    EOS - Additive Manufacturing


    Компания EOS создала манипуляторы, которые способны производить различные операции, где требуется захват и перемещение детали. Разработки EOS в этой области основываются на наблюдениях за поведением животных, в частности - этот манипулятор создан по примеру хобота слона.

    Такой робот-манипулятор может быть использован во множестве промышленных операций, как то: в транспортировке и упаковке, в перемещении деталей из одной рабочей зоны в другую, например - из 3D-принтера в камеру пост-обработки, чтобы исключить участие человека на этом этапе.

    Также компания спонсирует и представляет проект Roboy - это мобильный гуманоидный робот, который способен выполнять любые движения свойственные человеку и служить помощником на производстве.


    Concept Laser и Swisslog - M Line Factory


    Известный производитель печатающих металлом 3D-принтеров, Concept Laser заключил соглашение с компанией Swisslog, их общий проект - M Line Factory, это система перемещения металлических 3D-печатных деталей между станками Concept Laser с помощью роботов Swisslog.

    Компании продолжают совершенствование аппаратных комплексов для 3D-печати металлом. Роботизированные составляющие этих машин способны провести деталь через весь цикл - от загрузки проекта в память, до выхода готового изделия на склад, - без необходимости вмешательства оператора.

    Например, вот так это делает упомянутый выше Sawyer:

    Выводы

    Роботы в современной промышленности везде. Они в любом цеху и в любой области производства. И это нормально: роботы экономят деньги работодателей, а рабочих спасают от вредной и монотонно-отупляющей работы; роботы работают круглосуточно и безостановочно; роботы намного точнее живых рабочих - они не устают, у них не “замыливается глаз”, их сенсоры и системы позиционирования способны сохранять точность до сотых долей миллиметра.

    Пока мы видим их еще не везде - многие производственные процессы скрыты от рядового пользователя, да и не особо интересны обычно, - но совсем скоро невозможно будет не замечать того, что подавляющая часть всех материальных благ производится умными машинами.

    Хотите больше интересных новостей из мира 3D-технологий?

    Конечно, компаний гораздо больше — мы выделили лишь самые значимые из них, а также те, которые занимаются разработкой промышленных роботов в России и странах СНГ.

    Seiko Epson Corporation более известная как Epson — структурное подразделение японского многоотраслевого концерна Seiko Group. Один из крупнейших производителей струйных, матричных и лазерных принтеров, сканеров, настольных компьютеров, проекторов, а также роботов для монтажа мелких деталей.

    Роботы Epson впервые появились на мировом рынке в далеком 1984 году. Изначально созданные для удовлетворения потребностей внутренней автоматизации, роботы компании Epson быстро стали популярным на многих известных производственных площадках по всему миру. За последние 30 лет Epson Robots стала лидером отрасли роботизации для сборки мелких деталей и привнесла множество новинок, включая управление на базе ПК, компактные scara роботы и многое другое. На сегодняшний день более 55 000 роботов Epson установлено на заводах по всему миру. Многие из ведущих компаний-производителей полагаются на этих роботов каждый день, чтобы снизить издержки производства, улучшить качество продукции, увеличить производительность.

    Comau (Италия)

    Компания Comau — итальянская многонациональная компания, базирующаяся в Турине и являющаяся частью FCA Group. Comau — это интегрированная компания, специализирующаяся в области промышленной автоматизации с международной сетью из 35 действующих центров, 15 производственных предприятий и 5 инновационных центров по всему миру. Компания предлагает полные комплексные решения, услуги, продукты и технологии с компетенциями, начиная от резки металла до полностью роботизированных производственных систем для удовлетворения конкретных производственных потребностей в различных отраслях промышленности, от автомобильной, железнодорожной и тяжелой промышленности до возобновляемой энергетики и других отраслей.

    Comau выпускает различные модели промышленных роботов грузоподъемностью до 800 кг.

    Применяемость роботов Comau стандартна для любых роботов с антропоморфной кинематикой: сварочные технологии, паллетирование, механическая обработка, нанесение составов: окраска, грунтовка, клеи, геметики.

    Panasonic (Япония)

    Panasonic - это не только известная во всем мире японская машиностроительная корпорация с почти столетней историей (компания была основана в 1928 году), которая производит бытовую технику и электронные товары, но и один из лидеров рынка промышленной робототехники и сварочного оборудования.

    Panasonic Robots - подразделение глобальной корпорации Panasonic, которое специализируется на разработке, производстве и продаже промышленных роботов различного назначения. В частности, робот для сварки от Panasonic - это технологии «все в одном», без дополнительного интерфейса между роботом и сварочным источником. Сегодня продажи сварочных роботов Panasonic достигли отметки 40 000 единиц. Компания также выпускает универсальные манипуляторы для многих видов производственных задач.

    Роботы Panasonic отличаются высокой надежностью, долгим сроком службы и относительно низкой стоимостью. В настоящее время они успешно применяются в автомобильной, нефтехимической промышленности, машиностроении, а также логистике (обработке грузов).

    Adept (США)

    Adept Technology, Inc. - многонациональная корпорация со штаб-квартирой в Калифорнии. Компания специализируется на промышленной автоматизации и робототехнике, включая программное обеспечение. Компания Adept была основана в 1983 году. Все началось, когда основатели компании Брюс Шимано и Брайан Карлайл, оба аспиранты Стэнфордского университета, начали работать с Виктором Шейнманом в стенфордской лаборатории искусственного интеллекта.

    Сегодня компания активно работает в различных отраслях промышленности, требующих высокой скорости, точности обработки, включая обработку пищевых продуктов, потребительских товаров и электроники, упаковочной, автомобильной, медицинской и лабораторной автоматизации, а также развивающиеся рынки, такие как производство солнечных панелей.

    Universal Robots (Дания)

    Universal Robots — это датский производитель небольших гибких производственных совместных роботов, т. н. коллаборативных. Компания была основана в 2005 году тремя датскими инженерами. В ходе совместных исследований они пришли к выводу, что на тот момент на рынке робототехники преобладали тяжелые, дорогие и громоздкие роботы. Как следствие, они разработали идею сделать робототехнику доступной для малых и средних предприятий. В 2008 году первый UR5 cobots был представлен на датском и немецком рынке. В 2012 году был запущен второй робот — UR10. На выставке automatica 2014 в Мюнхене компания запустила полностью пересмотренную версию своего коллаборативного робота. Год спустя, весной 2015 года, был представлен новый робот UR3.

    Rozum Robotics (Беларусь)

    Rozum Robotics - компания-производитель инновационных продуктов в сфере робототехники. В портфеле компании сегодня ультра-лёгкий коллаборативный робот-манипулятор PULSE. Это лёгкий, компактный, простой в использовании робот, предназначенный для работы на производстве, в сфере обслуживания (а в перспективе и в доме).

    Благодаря продуманным характеристикам безопасности робот компании Rozum Robotics не может нанести вред в случае столкновения с человеком. Это позволяет устанавливать роботов рядом с человеком для помощи в рутинных, неинтересных или опасных задачах.

    Коллаборативный робот-манипулятор Rozum Robotics может быть использован для автоматизации множества задач и позволяет модернизировать и оптимизировать процессы на всех участках производства.

    Торговый дом «АРКОДИМ » (Россия)

    Компания «АРКОДИМ-Про» была основана в 2013 году в Казани и изначально производила станки с ЧПУ. Идея освоить производство роботов пришла весной 2014 года. Анализируя рынок станкостроения в России, руководители компании пришли к выводу, что роботов у нас никто не производит, а вот производителей станков с ЧПУ предостаточно. В результате всерьёз задумались разработать собственного промышленного робота.

    На сегодняшний день компания выпускает декартовых линейных роботов-манипуляторов ARKODIM. Роботы данной архитектуры нашли широкое применение в производствах, занимающихся литьём пластика под давлением. Также роботы ARKODIM широко применяются вкупе с различными конвейерами, где они захватывают подаваемые конвейером детали и укладывают их в упаковку. Если робота оснастить разрабатываемой этой же компанией системой машинного зрения, то он сможет выполнять ещё ряд дополнительных функций. Ещё одной из сфер применения роботов ARKODIM является сварка.

    BIT Robotics (Россия)

    Компания BIT Robotics создает новое оборудование для новых технологических процессов. BIT Robotics является создателем первого российского промышленного дельта робота. Созданный компанией дельта робот по характеристикам не уступает самым современным и скоростным иностранным аналогам. В его конструкции применены самые передовые материалы, в том числе композитные.

    Возможности предприятия и компетенции позволяют создавать любые роботизированные системы, широко применять серво системы и техническое зрение. Инженеры предприятия имеют богатый опыт работы. Большинство из них из космической и авиационной отрасли. Компания располагает самым современным производством, оснащенным станками с ЧПУ, литейным производством, гальваническим цехом, производством полимерных материалов и пр.

    Различные автоматические устройства занимают настолько прочное место в жизни человека, что без них уже практически невозможно представить себе современную цивилизацию. Однако история робототехники очень длинна, люди учились создавать различные машины практически в течение всей своей истории. Конечно, древние машины не могут сравниться с современными, это были скорее их подобия. Однако они демонстрируют, что идеи создания машин, в частности искусственной имитации человека, прослеживаются в самых древних слоях человеческой истории.

    Появление слова «робот»

    Это слово ввел в обиход знаменитый Карел Чапек. Он впервые использовал этот термин в названии своей пьесы «Россумские универсальные роботы», увидевшей свет в 1920 году. Однако его нельзя считать автором слова «робот», оно всего лишь происходит от чешского robota, обозначающего всего лишь «работу». По заявлению самого писателя, слово предложил его брат Йозеф, тогда как сам Чапек не мог решить, как же назвать своих персонажей.

    Сюжет пьесы Чапека многим покажется знакомым: поначалу люди эксплуатируют своих механических слуг на различных тяжелых работах, потом те восстают и, в свою очередь, обращают в рабство людей.

    В современном же понимании «робот» - это механическое устройство, действующее по заданной программе самостоятельно, без человеческой помощи.

    Понятие робототехники и ее законы

    В 1941 году в рассказе «Лжец» были сформулированы знаменитые законы робототехники Айзека Азимова, которые призваны регулировать поведение этих машин.

    1. Робот не может нанести урон человеку либо своим бездействием допустить, чтобы этот урон был нанесен.
    2. Робот обязан подчиняться человеку, пока это не идет вразрез с первым законом.
    3. Робот может защищать себя, если это не противоречит первым двум законам.

    Впоследствии, отталкиваясь от этих законов, сам Азимов и другие авторы создали огромный пласт произведений, посвященных взаимоотношениям людей и машин.

    Азимовым же было введено само понятие «робототехника». Слово, когда-то употребленное в фантастическом рассказе, сейчас является названием серьезной научной отрасли, занимающейся разработкой и конструированием различных механизмов, автоматизацией процессов и т. д.

    Машины древнего мира

    История робототехники уходит корнями в глубокую древность. Некое подобие роботов изобрели еще в Древнем Египте более четырех тысяч лет назад, когда жрецы прятались внутри статуй богов и разговаривали оттуда с людьми. У статуй при этом двигались руки и головы.

    Если дать некоторую волю фантазии, можно обнаружить упоминания о роботах, например, в мифах Древней Греции. Еще у Гомера упомянуты механические слуги, которых создавал для себя древнегреческий бог Гефест, великан Талос, сотворенный им же из бронзы для охраны Крита от неприятеля. Платон повествует об ученом Архите из Тарентума, сделавшем искусственного голубя, способного летать.

    Архимедом в III веке до нашей эры был якобы изготовлен аппарат, крайне напоминающий современный планетарий: прозрачный шар, приводившийся в движение водой, на котором отображалось движение всех небесных тел, известных на тот момент.

    В Средние века люди уже начали создавать настоящие машины, способные делать множество интересных вещей. К периоду Средневековья относятся и попытки создания первых человекообразных машин.

    Альберт Великий, известный алхимик XIII века, создал андроида, выполнявшего функции привратника, открывавшего дверь на стук и кланявшегося гостям (андроид - робот, копирующий человека внешностью и поведением). Он же сконструировал механизм, способный говорить человеческим голосом, так называемую говорящую голову.

    Кто первым создал робота?

    Проект первого робота, о котором сохранились достоверные сведения, создал Леонардо да Винчи. Это был андроид, выглядевший как рыцарь в доспехах. Согласно чертежам Леонардо, он мог двигать руками и головой. Остается открытым вопрос, почему знаменитый изобретатель не наделил своего рыцаря возможностью двигать ногами, т. е. ходить. Возможно, он считал это технически сложной проблемой (что полностью соответствует истине). Либо же предполагалось, что рыцарь должен ездить на лошади, и подвижность ног для него необязательна.

    Точно не известно, смог ли да Винчи построить своего «терминатора», зато он сконструировал робота-льва, который при появлении короля разрывал себе когтями грудь, показывая скрытый в ней герб Франции.

    Кроме этого, у Леонардо также были идеи о взаимодействии механизмов с человеческими органами, т. е. он уже на рубеже XV-XVI веков предвосхитил современные разработки протезов, управляющихся непосредственно нервной системой человека.

    Механические музыканты и ходячие паровозы

    В течение XVI века в Европе было создано множество устройств, в основном с использованием заводных (часовых) механизмов. Например, в Германии были изготовлены искусственная муха и орел, способные летать, а в Италии - женщина-робот, игравшая на лютне.

    В течение XVII века европейцы разрабатывают и усовершенствуют первые механические «калькуляторы». Поначалу они могут лишь складывать и вычитать, но к концу века способны уже к делению и умножению.

    • разработка машин, имитирующих и заменяющих человека и его действия;
    • создание устройств, предназначенных для хранения и обработки информации.

    Параллельно продолжают создаваться механические человекоподобные устройства, способные играть на музыкальных инструментах, писать и рисовать.

    Наступление XIX века ознаменовалось началом «дружбы» людей с электричеством. Оно начинает быстро распространяться и проникать во многие сферы человеческой деятельности. Одновременно совершенствуются различные механические вычислительные и аналитические машины, были изобретены телефон и телеграф.

    Известны истории о различных человекоподобных машинах, якобы изобретенных и использовавшихся в США в течение XIX века:

    • в 1865 году конструктором Джонни Брейнардом был создан так называемый паровой человек, которого запрягали в повозку вместо лошади. Это был, по сути, паровоз, выглядевший как человек (только намного больше габаритами). Его нужно было постоянно «топить», и управлялся он, как лошадь, вожжами. Утверждалось, что он мог «ходить» со скоростью до 50 км/ч.
    • Через некоторое время Фрэнк Рид испытывает уже «электрического человека», однако об этом изобретении мало что известно.
    • В 1893 году Арчи Кемпион представил образец искусственного солдата на паровом ходу под названием Boilerplate, который якобы неоднократно использовался на практике, т. е. в боях.

    Все эти сведения интересны, но вызывают некоторые сомнения, поскольку, несмотря на вроде бы выдающиеся характеристики, данные изделия так и не пошли в серийное производство, в отличие от паровозов, пароходов и так далее. Скорее всего, они существовали только в виде опытных экземпляров и так и не нашли своего применения, будучи, по сути, игрушками для взрослых.

    ХХ век - эра расцвета робототехники

    В XX веке история робототехники вступает в свою финальную стадию, приведшую к созданию тех роботов, которых человечество знает сейчас.

    Совершаются прорывы в области электроники, появляются диоды и триоды. Первые ламповые компьютеры сначала разрабатываются в теории, а затем и реализуются.

    В то же время создается первый электронный управляемый на расстоянии, способный двигаться и разговаривать. Затем появляется электронная собака, реагирующая на свет и способная лаять.

    К концу первой трети XX века радиоуправляемые андроиды учатся говорить по телефону, ходить, даже выступать в качестве лекторов на выставке, курить сигареты и так далее. В тот момент многие уже думали, что осталось немного - и роботы заменят людей. Однако потом становится ясно, что применить андроидов того времени для каких бы то ни было работ пока не получится из-за недостаточного на тот момент развития технологий.

    Но эти выводы не останавливают изобретателей - андроиды продолжали появляться и разрабатываются до сих пор.

    В 1940-1950 годах продолжается совершенствование электроники, компьютеров и компьютерного программирования, появляется понятие «искусственный интеллект», после чего происходит существенный скачок в развитии начинают быстро «умнеть».

    Наконец, с начала 60-х начинает осуществляться мечта человечества - машины начинают заменять людей на тяжелых, опасных и неинтересных работах. Появляются первые роботы-манипуляторы современного типа. Сначала они выполняют только самые неудобные для человека операции, затем создаются автоматические сборочные линии.

    Со временем начинается повальное увлечение людей роботами. Для детей открывается множество кружков и школ робототехники, выпускаются различные развивающие игрушки и конструкторы. Развлекательная индустрия также не остается в стороне - в 1986 году выходит первая часть фильма «Терминатор», которая произвела настоящий фурор по всему миру.

    Отечественная робототехника

    История робототехники в России, также как и в Европе, насчитывает не одно столетие. С некоторого времени российские ученые не отстают от своих европейских коллег в конструировании различных автоматов: в последней трети XVIII века в России создается машина для вычислений, названная машиной Якобсона, а в 1790 году Иван Петрович Кулибин создает свои знаменитые «яичные» часы. В них были встроены несколько человеческих фигурок, которые выполняли определенные действия, также часы играли гимн и другие мелодии.

    Именно русские ученые совершили несколько знаковых для истории робототехники открытий. Семен Николаевич Корсаков в 1832 году заложил основы информатики. Он разработал несколько машин, способных производить интеллектуальные вычисления, применив для их программирования перфокарты.

    Борис Семенович Якоби в 1838 году изобрел и испытал первый электромотор, принципиальная конструкция которого остается актуальной и поныне. Якоби, установив его на лодку, совершил с его помощью прогулку по Неве.

    Академик П. Л. ЧебышевВ 1878 г. представил первый прототип шагающего транспортного средства - стопоходящую машину.

    М. А. Бонч-Бруевич изобрел в 1918 году триггер, благодаря чему стало возможным создание первых компьютеров, а В. К. Зворыкин чуть позже демонстрирует электронную трубку, давшую начало телевидению.

    Первая ЭВМ появляется в СССР в 1948 году, а уже в 1950-м выпущена МЭСМ (малая электронная счетная машина), на тот момент самая быстрая в Европе.

    Официально историю робототехники в России можно отсчитывать с 1971 года. Тогда в Московском высшем техническом училище имени Баумана создается кафедра специальной робототехники и мехатроники, которую возглавляет академик Е. П. Попов. Он стал создателем отечественной школы инженерной робототехники.

    Отечественная наука достойно конкурировала с зарубежной. Еще в 1974 году стал чемпионом мира на шахматном турнире среди машин. А созданный в 1994 году суперкомпьютер "Эльбрус-3" вдвое превосходил по скорости работы самый мощный американский компьютер того времени. Однако он не был пущен в серийное производство, возможно, из-за тяжелой ситуации в стране на тот момент.

    Русские автоматические космонавты

    Официально начало робототехники в России датируется 1971 годом. Именно тогда она была официально признана наукой в СССР. Хотя к тому времени автоматы российского производства уже вовсю бороздили просторы космоса.

    В 1957 году вышел на орбиту первый в мире искусственный спутник Земли. В 1966 году станция "Луна-9" передает на Землю радиосигнал с поверхности Луны, а аппарат "Венера-3", успешно достигнув планеты, установил там вымпел СССР.

    Всего через четыре года запущены еще две лунные станции и обе выполнили свою миссию успешно. Аппарат "Луноход-1", доставленный станцией "Луна-17", проработал в три раза дольше, чем планировалось, и передал советским ученым множество ценнейшей информации.

    В 1973 году еще одна станция этой же серии доставила на Луну еще один луноход, который также справился со своей задачей на отлично.

    Робототехника в наше время

    Современные роботы проникли в очень многие сферы человеческой жизни. Их многообразие потрясает: здесь и просто детские игрушки, и целые автоматизированные заводы, хирургические комплексы, искусственные домашние питомцы, военные и гражданские беспилотные аппараты. Их постоянной разработкой и совершенствованием занимается множество организаций в мире. В России ведущие позиции в научной робототехнике занимает ЦНИИ РТК (Центральный научно-исследовательский институт робототехники и технической кибернетики) в Санкт-Петербурге, основанный 1961 году как конструкторское бюро при Политехническом институте. В этом крупнейшем центре разрабатывались электронные системы для корабля «Буран», станций серии «Луна» и международной космической станции.

    Специальность «Мехатроника и робототехника» и ей подобные присутствуют во многих технических университетах мира. Специалисты с таким образованием весьма востребованы на рынке труда, ведь автоматизация проникает все глубже во многие сферы человеческой деятельности. Для увлекающихся предметом в свободное время выпущено множество книг по робототехнике, как в России, так и в других странах.

    Несмотря на то что нынешняя техника достигла небывалых высот, и роботы активно используются людьми, их человекоподобные представители - андроиды - пока остаются «не у дел». Они совершенствуются, разрабатываются все более сложные модели, но в практическом применении они до сих пор безнадежно проигрывают своим колесным, гусеничными и даже стационарным «коллегам» и остаются, по большому счету, игрушками. Дело в том, что человеческая ходьба - очень сложный процесс, сымитировать который машине не так-то просто.

    Кроме того, с практической точки зрения, именно в человекоподобных роботах нет какой-то острой необходимости. В промышленности с успехом работают стационарные манипуляторы, объединенные в автоматические производственные линии. Там же, где требуется передвигаться - будь то погрузочные работы на складе, разминирование бомб, обследование разрушенных зданий, - колесный и гусеничный привод куда проще и эффективнее, нежели имитация человеческих ног.

    Тем не менее люди не отказываются от работы над андроидами, по всему миру регулярно проводятся соревнования, на которых представители различных школ робототехники демонстрируют свое мастерство в управлении своими изделиями. Постоянно устраиваются турниры и непосредственно между машинами, например, по шахматам или футболу.

    Классификация роботов

    Существует несколько методов классификации. По характеру выполняемых работ автоматы делятся на промышленные, строительные, для сельского хозяйства, для транспортировки, бытовые, военные, охранные, медицинские и исследовательские.

    По типу управления они подразделяются на управляемые с помощью оператора, полуавтономные и полностью автономные.

    Машины первого типа являются просто дистанционно управляемыми машинами (простейший пример - детский радиоуправляемый автомобильчик или вертолет). Полуавтономные могут выполнять самостоятельно часть операций, но в ключевых моментах все же требуется вмешательство человека. Полностью автономные роботы весь спектр операций выполняют самостоятельно (например, манипуляторы автоматических сборочных линий).

    По уровню мобильности выделяют следующие классы роботов: стационарные и мобильные. Стационарные - это те самые манипуляторы, которые все привыкли видеть, например, на автомобильных заводах. Мобильные дополнительно делятся на шагающие, колесные либо на гусеничном ходу.

    Ударники современного производства

    Различные промышленные производства являются той отраслью, в которой находит практическое применение основная часть современных автоматических устройств.

    История промышленной робототехники начинается в 1725 году, когда во Франции была изобретена перфолента, примененная для программирования ткацких станков.

    Начало автоматизации производства пришлось на XIX век, когда во Франции стартовало массовое производство автоматических ткацких станков на перфокартах.

    Первую конвейерную линию для сборки автомобилей установил на своем заводе Генри Форд в 1913 году. Сборка одного автомобиля занимала порядка полутора часов. Конечно же, эта линия еще не была полностью автоматизированной, как сейчас, но это был выход на качественно новый уровень производства.

    Официально использование роботов на производстве начинается в 1961 году, когда на заводе General Motors в Нью-Джерси был установлен первый официально изготовленный манипулятор. Работала эта машина на гидроприводах и программировалась через магнитный барабан.

    Бум разработок в сфере промышленной автоматизации пришелся на 70-е годы XX века. В 1970 году в США был создан первый манипулятор современного типа для использования в промышленности: он обладал электроприводами с шестью степенями свободы и управлялся с компьютера. Параллельно разработки велись в Швейцарии, Германии и Японии. В 1977 году выпущен первый робот японского производства.

    В начале 80-х General Motors начинает автоматизацию своего производства, а уже в 1984 году начала его и Россия - "АвтоВАЗ" приобретает лицензию на самостоятельное производство роботов у немецкой фирмы KUKA Robotics. Однако пальма первенства все же за японцами - в середине 90-х в Японии было сконцентрировано две трети от общего количества роботов во всем мире, сейчас - примерно половина.

    Сегодня представить себе автомобильное, да и любое другое поточное производство без механических помощников практически невозможно. Первое место занимают сварочные автоматы. Точность роботизированной лазерной сварки составляет десятые доли миллиметра. Такой аппарат способен одновременно заниматься и раскройкой металла на детали.

    Следом идут механизмы, осуществляющие погрузочные и разгрузочные работы, подачу заготовок в станки и складирование готовых изделий.

    На третьем месте по степени автоматизации стоит кузнечно-литейное производство. На сегодняшний момент почти все такие цеха в Европе роботизированы, так как условия работы там очень тяжелы для людей.

    Другие операции, для которых чаще всего применяются сейчас автоматы - гибка труб, сверление отверстий, фрезеровка и шлифовка поверхностей.

    Где машины могут заменить людей?

    Ответ на вопрос о том, человек или робот должен выполнять ту или иную работу, кроется в различиях между людьми и машинами. На данный момент даже самые совершенные из машин действуют по определенным, заранее заложенным в программу алгоритмам (пускай порой и весьма сложным). У них нет свободы воли, свободы выбора, желаний, порывов, ничего из того, что определяет творческую составляющую человека.

    Робот может выполнить работу большой сложности и точности, сможет выполнить эту работу в таких условиях, в которых человек не прожил бы и часа. Но он не сможет написать книгу или сценарий нового фильма, создать живописное полотно, если только это не было заранее заложено в его память человеком.

    Поэтому профессии творческие, где важна нестандартность, нешаблонность мышления, безусловно, остаются за людьми. Робот может быть сварщиком, грузчиком, маляром, даже космонавтом, но он не сможет стать (по крайней мере, на нынешнем этапе развития) писателем, поэтом или художником.

    Стоит ли бояться роботов?

    Самый главный страх человечества в отношении машин - это боязнь того, что они, став совершенными, однажды перестанут подчиняться и начнут жить своей жизнью, превратив в рабов уже людей. Этот страх шел рука об руку с развитием робототехники. Он находит свое выражение как в мифологии (например, еврейский миф о големе, восставшем против своего создателя), так и в искусстве. Известнейшие фильмы "Матрица", "Терминатор", великое множество книг, повествующих о восстании машин. Пьеса давшая жизнь слову "робот", также заканчивается порабощением человечества его бывшими слугами.

    Однако на современном этапе развития науки эти страхи бессмысленны. У роботов отсутствует сознание, аналогичное человеческому, поэтому у них не может быть вообще никаких желаний, не говоря уже о стремлении захватить мир.

    Для того чтобы воспроизвести сознание у машины, человеку необходимо сначала разобраться, что представляет собой его собственное сознание, как и из чего оно формируется. Ответ на этот вопрос кроется в глубинах человеческого мозга, который исследован еще далеко не полностью.

    Для того чтобы «восстать», роботам необходимо понимать, что такое мировое господство и для чего им это нужно.

    А до этого момента любая, даже самая сложная и совершенная машина принципиально ничем не отличается от кухонного комбайна или кофемолки. Поэтому вопрос о том, кто в итоге будет главным на Земле - робот или человек, пока не является насущным.